Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Front Cell Infect Microbiol ; 14: 1296777, 2024.
Article En | MEDLINE | ID: mdl-38469347

Phage therapy is a potential approach in the biocontrol of foodborne pathogens. However, the emergence of phage resistance and the narrow host range of most phage isolates continue to limit the antimicrobial efficacy of phages. Here, we investigated the potential of the pqsA gene, encoding the anthranilate-CoA ligase enzyme, as an adjuvant for phage therapy. The knockout of the pqsA gene significantly enhanced the bactericidal effect of phages vB_Pae_QDWS and vB_Pae_S1 against Pseudomonas aeruginosa. Under phage infection pressure, the growth of the PaΔpqsA was significantly inhibited within 8 h compared to the wild-type PAO1. Furthermore, we found that altering phage adsorption is not how PaΔpqsA responds to phage infection. Although pqsA represents a promising target for enhancing phage killing, it may not be applicable to all phages, such as types vB_Pae_W3 and vB_Pae_TR. Our findings provide new material reserves for the future design of novel phage-based therapeutic strategies.


Bacteriophages , Phage Therapy , Pseudomonas Infections , Pseudomonas Phages , Humans , Pseudomonas aeruginosa/genetics , Pseudomonas Phages/genetics , Pseudomonas Infections/therapy , Mutation
2.
Int J Food Microbiol ; 403: 110304, 2023 Oct 16.
Article En | MEDLINE | ID: mdl-37429117

Quorum sensing (QS) plays an important role in phage-host interactions. Shewanella baltica can't produce the N-acyl-homoserine lactones (AHLs) signal molecules but can eavesdrop on exogenous AHLs through its LuxR receptor. However, no clear evidence exists regarding the involvement of AHLs-mediated QS systems in S. baltica in regulating phage infection. Here, we report that AHLs modulated the phage resistance of S. baltica OS155. Specifically, we characterized a S. baltica phage vB_Sb_QDWS and preliminarily identified that lipopolysaccharide (LPS) is an important receptor for phage vB_Sb_QDWS. AHLs could protect S. baltica against phage infection by decreasing LPS-mediated phage adsorption. The expression of genes galU and tkt, which are essential for LPS synthesis, down-regulated significantly in response to AHLs autoinducers. Our finding confirms the important roles of QS in virus-host interactions and would be helpful to develop novel phage strategies for food spoilage control.


Acyl-Butyrolactones , Bacterial Proteins , Bacteriophages , Shewanella , Trans-Activators , Quorum Sensing , Shewanella/metabolism , Shewanella/virology , Signal Transduction , Acyl-Butyrolactones/metabolism , Repressor Proteins/metabolism , Trans-Activators/metabolism , Bacteriophages/physiology , Virus Attachment , Receptors, Virus/metabolism , Bacterial Proteins/metabolism , Lipopolysaccharides/metabolism , Gene Expression
3.
Mol Genet Genomics ; 298(5): 1037-1044, 2023 Sep.
Article En | MEDLINE | ID: mdl-37247008

Bacteriophages are potential antibiotic substitutes for the treatment of antibiotic resistant bacteria. Here, we report the genome sequences of a double-stranded DNA podovirus vB_Pae_HB2107-3I against clinical multi-drug resistant Pseudomonas aeruginosa. Phage vB_Pae_HB2107-3I remained stable over a wide range of temperatures (37-60 °C) and pH values (pH 4-12). At MOI of 0.01, the latent period of vB_Pae_HB2107-3I was 10 min, and the final titer reached about 8.1 × 109 PFU/mL. The vB_Pae_HB2107-3I genome is 45,929 bp, with an average G + C content of 57%. A total of 72 open reading frames (ORFs) were predicted, of which 22 ORFs have a predicted function. Genome analyses confirmed the lysogenic nature of this phage. Phylogenetic analysis revealed that phage vB_Pae_HB2107-3I was a novel member of Caudovirales infecting P. aeruginosa. The characterization of vB_Pae_HB2107-3I enrich the research on Pseudomonas phages and provide a promising biocontrol agent against P. aeruginosa infections.


Bacteriophages , Bacteriophages/genetics , Pseudomonas aeruginosa/genetics , Phylogeny , Genome, Viral/genetics , Anti-Bacterial Agents , Open Reading Frames/genetics
4.
J Microbiol ; 61(5): 559-569, 2023 May.
Article En | MEDLINE | ID: mdl-37213024

Escherichia coli is a preferred strain for recombinant protein production, however, it is often plagued by phage infection during experimental studies and industrial fermentation. While the existing methods of obtaining phage-resistant strains by natural mutation are not efficient enough and time-consuming. Herein, a high-throughput method by combining Tn5 transposon mutation and phage screening was used to produce Escherichia coli BL21 (DE3) phage-resistant strains. Mutant strains PR281-7, PR338-8, PR339-3, PR340-8, and PR347-9 were obtained, and they could effectively resist phage infection. Meanwhile, they had good growth ability, did not contain pseudolysogenic strains, and were controllable. The resultant phage-resistant strains maintained the capabilities of producing recombinant proteins since no difference in mCherry red fluorescent protein expression was found in phage-resistant strains. Comparative genomics showed that PR281-7, PR338-8, PR339-3, and PR340-8 mutated in ecpE, nohD, nrdR, and livM genes, respectively. In this work, a strategy was successfully developed to obtain phage-resistant strains with excellent protein expression characteristics by Tn5 transposon mutation. This study provides a new reference to solve the phage contamination problem.


Bacteriophages , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Mutagenesis , Recombinant Proteins/genetics , Mutation
5.
Microbiol Spectr ; 11(1): e0391122, 2023 02 14.
Article En | MEDLINE | ID: mdl-36602321

Phage therapy is challenged by the frequent emergence of bacterial resistance to phages. As an interspecies signaling molecule, indole plays important roles in regulating bacterial behaviors. However, it is unclear whether indole is involved in the phage-bacterium interactions. Here, we report that indole modulated phage resistance of Pseudomonas aeruginosa PAO1. Specifically, we found that the type IV pilus (T4P) acts as an important receptor for P. aeruginosa phages vB_Pae_S1 and vB_Pae_TR, and indole could protect P. aeruginosa against phage infection via decreasing the T4P-mediated phage adsorption. Further investigation demonstrated that indole downregulated the expression of genes pilA, pilB, and pilQ, which are essential for T4P assembly and activity. Indole inhibits phage attacks, but our data suggest that indole functions not through interfering with the AHL-based QS pathway, although las quorum sensing (QS) of P. aeruginosa PAO1 were reported to promote phage infection. Our finding confirms the important roles of indole in virus-host interactions, which will provide important enlightenment in promoting phage therapy for P. aeruginosa infections. IMPORTANCE Our finding is significant with respect to the study of the interactions between phage and host. Although the important roles of indole in bacterial physiology have been revealed, no direct examples of indole participating in phage-host interactions were reported. This study reports that indole could modulate the phage resistance of indole-nonproducing Pseudomonas aeruginosa PAO1 through inhibition of phage adsorption mechanism. Our finding will be significant for guiding phage therapy and fill some gaps in the field of phage-host interactions.


Bacteriophages , Bacteriophages/metabolism , Pseudomonas aeruginosa/genetics , Fimbriae, Bacterial/metabolism , Quorum Sensing , Bacterial Proteins/genetics
6.
Virus Res ; 323: 198978, 2023 Jan 02.
Article En | MEDLINE | ID: mdl-36288775

Here, we report the genome sequence of a double-stranded DNA siphovirus, vB_Pae_LC3I3 infective for P. aeruginosa PA14. Phage vB_Pae_LC3I3 was identified as a linear double-stranded DNA phage of 49,926 bp with 59% G+C content. The vB_Pae_LC3I3 genome contains 78 open reading frames, and the function of 22 ORFs can be predicted. Genome analysis confirmed the lysogenic nature of this phage, which encodes the typical lysogen-related integrase and CI/Cro regulator. One-step growth curve revealed that the latent period of phage vB_Pae_LC3I3 lasted for 30 min. And vB_Pae_LC3I3 showed good temperature stability and pH stability. Based on electron microscopy, phylogenetic, and comparative genomic analyses, this novel Pseudomonas temperate phage represents a novel unassigned siphoviruses cluster. The study of phage vB_Pae_LC3I3 will provide basic information for further research on treatment of P. aeruginosa infections.

7.
Microbiol Spectr ; 10(5): e0135622, 2022 10 26.
Article En | MEDLINE | ID: mdl-35972274

Bacteria frequently encounter selection by both phages and antibiotics. However, our knowledge on the evolutionary interactions between phages and antibiotics are still limited. Here, we characterized a phage-resistant Pseudomonas aeruginosa variant PAO1-R1 that shows increased sensitivity to gentamicin and polymyxin B. Using whole genome sequencing, significant genome differences were observed between the reference P. aeruginosa PAO1 and PAO1-R1. Compared to PAO1, 64 gene-encoding proteins with nonsynonymous single nucleotide polymorphisms (SNPs) and 31 genes with insertion/deletion (indel) mutations were found in PAO1-R1. We observed a significant reduction in phage adsorption rate for both phage vB_Pae_QDWS and vB_Pae_W3 against PAO1-R1 and proposed that disruption of phage adsorption is likely the main cause for evolving resistance. Because the majority of spontaneous mutations are closely related to membrane components, alterations in the cell envelope may explain the antibiotic-sensitive phenotype of PAO1-R1. Collectively, we demonstrate that the evolution of phage resistance comes with fitness defects resulting in antibiotic sensitization. Our finding provides new insights into the evolutionary interactions between resistance to the phage and sensitivity to antibiotics, which may have implications for the future clinical use of steering in phage therapies. IMPORTANCE Bacteria frequently encounter the selection pressure from both antibiotics and lytic phages. Little is known about the evolutionary interactions between antibiotics and phages. Our study provides new insights into the trade-off mechanism between resistance to the phage and sensitivity to antibiotics. This evolutionary trade-off is not dependent on the outer membrane proteins (OMPs) of the multidrug efflux pumps. The disruption of phage adsorption that induced phage resistance and the changes in structure or composition of membranes are presumably one of the major causes for antibiotic sensitivity. Our finding may fill some gaps in the field of phage-host interplay and have implications for the future clinical use of steering in phage therapies.


Bacteriophages , Pseudomonas Phages , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Pseudomonas Phages/genetics , Anti-Bacterial Agents/pharmacology , Polymyxin B/pharmacology , Polymyxin B/metabolism , Gentamicins/metabolism
8.
J Virol ; 96(8): e0019722, 2022 04 27.
Article En | MEDLINE | ID: mdl-35348363

In Pseudomonas aeruginosa, the complex multisensing regulatory networks RetS-GacS/GacA have been demonstrated to play key roles in controlling the switch between planktonic and sessile lifestyles. However, whether this multisensing system is involved in the regulation of phage infection has not been investigated. Here, we provide a link between the sensors RetS/GacS and infection of phages vB_Pae_QDWS and vB_Pae_W3. Our data suggest that the sensors kinases RetS and GacS in Pseudomonas aeruginosa play opposite regulatory functions on phage infection. Mutation in retS increased phage resistance. Cellular levels of RsmY and RsmZ increased in PaΔretS and were positively correlated with phage resistance. Further analysis demonstrated that RetS regulated phage infection by affecting the type IV pilus (T4P)-mediated adsorption. The regulation of RetS on phage infection depends on the GacS/GacA two-component system and is likely a dynamic process in response to environmental signals. The findings offer additional support for the rapid emergence of phage resistance. IMPORTANCE Our knowledge on the molecular mechanisms behind bacterium-phage interactions remains limited. Our study reported that the complex multisensing regulatory networks RetS-GacS/GacA of Pseudomonas aeruginosa PAO1 play key roles in controlling phage infection. The main observation was that the mutation in RetS could result in increased phage resistance by reducing the type IV pilus-mediated phage adsorption. The bacterial defense strategy is generally applicable to various phages since many P. aeruginosa phages can use type IV pilus as their receptors. The results also suggest that the phage infection is likely to be regulated dynamically, which depends on the environmental stimuli. Reduction of the signals that RetS favors would increase phage resistance. Our study is particularly remarkable for uncovering a signal transduction system that was involved in phage infection, which may help in filling some knowledge gaps in this field.


Bacteriophages , Pseudomonas aeruginosa , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteriophages/genetics , Bacteriophages/metabolism , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/virology , Signal Transduction/genetics
...